Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici.

Identifieur interne : 000085 ( Main/Exploration ); précédent : 000084; suivant : 000086

Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici.

Auteurs : Melania Figueroa [États-Unis] ; Narayana M. Upadhyaya [Australie] ; Jana Sperschneider [Australie] ; Robert F. Park [Australie] ; Les J. Szabo [États-Unis] ; Brian Steffenson [États-Unis] ; Jeff G. Ellis [Australie] ; Peter N. Dodds [Australie]

Source :

RBID : pubmed:26941766

Abstract

The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort toward controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr) genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr) proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Toward this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens, including the related flax rust fungus. Upregulation of gene expression in haustoria and evidence for diversifying selection are two useful parameters to identify candidate Avr genes. Recently, we have also applied machine learning approaches to agnostically predict candidate effectors. Here, we review progress in stem rust pathogenomics and approaches currently underway to identify Avr genes recognized by wheat Sr genes.

DOI: 10.3389/fpls.2016.00205
PubMed: 26941766
PubMed Central: PMC4764693


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici.</title>
<author>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota St. Paul, MN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota St. Paul, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Upadhyaya, Narayana M" sort="Upadhyaya, Narayana M" uniqKey="Upadhyaya N" first="Narayana M" last="Upadhyaya">Narayana M. Upadhyaya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sperschneider, Jana" sort="Sperschneider, Jana" uniqKey="Sperschneider J" first="Jana" last="Sperschneider">Jana Sperschneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA</wicri:regionArea>
<wicri:noRegion>WA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Park, Robert F" sort="Park, Robert F" uniqKey="Park R" first="Robert F" last="Park">Robert F. Park</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Szabo, Les J" sort="Szabo, Les J" uniqKey="Szabo L" first="Les J" last="Szabo">Les J. Szabo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA; Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research ServiceSt. Paul, MN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA; Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research ServiceSt. Paul, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steffenson, Brian" sort="Steffenson, Brian" uniqKey="Steffenson B" first="Brian" last="Steffenson">Brian Steffenson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota St. Paul, MN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota St. Paul, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ellis, Jeff G" sort="Ellis, Jeff G" uniqKey="Ellis J" first="Jeff G" last="Ellis">Jeff G. Ellis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26941766</idno>
<idno type="pmid">26941766</idno>
<idno type="doi">10.3389/fpls.2016.00205</idno>
<idno type="pmc">PMC4764693</idno>
<idno type="wicri:Area/Main/Corpus">000080</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000080</idno>
<idno type="wicri:Area/Main/Curation">000080</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000080</idno>
<idno type="wicri:Area/Main/Exploration">000080</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici.</title>
<author>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota St. Paul, MN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota St. Paul, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Upadhyaya, Narayana M" sort="Upadhyaya, Narayana M" uniqKey="Upadhyaya N" first="Narayana M" last="Upadhyaya">Narayana M. Upadhyaya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sperschneider, Jana" sort="Sperschneider, Jana" uniqKey="Sperschneider J" first="Jana" last="Sperschneider">Jana Sperschneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA</wicri:regionArea>
<wicri:noRegion>WA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Park, Robert F" sort="Park, Robert F" uniqKey="Park R" first="Robert F" last="Park">Robert F. Park</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Szabo, Les J" sort="Szabo, Les J" uniqKey="Szabo L" first="Les J" last="Szabo">Les J. Szabo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA; Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research ServiceSt. Paul, MN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA; Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research ServiceSt. Paul, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steffenson, Brian" sort="Steffenson, Brian" uniqKey="Steffenson B" first="Brian" last="Steffenson">Brian Steffenson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota St. Paul, MN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota St. Paul, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ellis, Jeff G" sort="Ellis, Jeff G" uniqKey="Ellis J" first="Jeff G" last="Ellis">Jeff G. Ellis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort toward controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr) genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr) proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Toward this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens, including the related flax rust fungus. Upregulation of gene expression in haustoria and evidence for diversifying selection are two useful parameters to identify candidate Avr genes. Recently, we have also applied machine learning approaches to agnostically predict candidate effectors. Here, we review progress in stem rust pathogenomics and approaches currently underway to identify Avr genes recognized by wheat Sr genes. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26941766</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici.</ArticleTitle>
<Pagination>
<MedlinePgn>205</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2016.00205</ELocationID>
<Abstract>
<AbstractText>The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort toward controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr) genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr) proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Toward this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens, including the related flax rust fungus. Upregulation of gene expression in haustoria and evidence for diversifying selection are two useful parameters to identify candidate Avr genes. Recently, we have also applied machine learning approaches to agnostically predict candidate effectors. Here, we review progress in stem rust pathogenomics and approaches currently underway to identify Avr genes recognized by wheat Sr genes. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Figueroa</LastName>
<ForeName>Melania</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota St. Paul, MN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Upadhyaya</LastName>
<ForeName>Narayana M</ForeName>
<Initials>NM</Initials>
<AffiliationInfo>
<Affiliation>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sperschneider</LastName>
<ForeName>Jana</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Agriculture, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Robert F</ForeName>
<Initials>RF</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Szabo</LastName>
<ForeName>Les J</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA; Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research ServiceSt. Paul, MN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steffenson</LastName>
<ForeName>Brian</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota St. Paul, MN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ellis</LastName>
<ForeName>Jeff G</ForeName>
<Initials>JG</Initials>
<AffiliationInfo>
<Affiliation>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dodds</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
<AffiliationInfo>
<Affiliation>Agriculture, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Puccinia</Keyword>
<Keyword MajorTopicYN="N">avirulence</Keyword>
<Keyword MajorTopicYN="N">barley</Keyword>
<Keyword MajorTopicYN="N">effectors</Keyword>
<Keyword MajorTopicYN="N">resistance</Keyword>
<Keyword MajorTopicYN="N">stem rust</Keyword>
<Keyword MajorTopicYN="N">virulence</Keyword>
<Keyword MajorTopicYN="N">wheat</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26941766</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2016.00205</ArticleId>
<ArticleId IdType="pmc">PMC4764693</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2000 Aug 1;19(15):4004-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10921881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9328-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12077318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Aug;57(8):2332-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8888-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Mar 30;315(5820):1786-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17395806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2898-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17873095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Dec;19(12):4077-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2000 Aug;90(8):819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Mar 6;323(5919):1360-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19229000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 May;21(5):1573-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19454732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Nov;26(11):2499-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(5):919-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jan;61(2):364-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19874543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Dec;99(12):1355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19900001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Jan;23(1):49-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19958138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 11;463(7282):763-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20148030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 18;464(7287):367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2005 Mar 1;6(2):99-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Jan;12(1):93-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):468-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:465-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21568701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2011 Dec;13(12):1849-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14676-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e24230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Mar;25(3):279-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22046958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 May;13(4):414-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):483-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22483402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:219-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22920559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 29;491(7426):711-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Feb;73(3):521-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23110316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Apr;26(4):407-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23216085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23441218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Aug;26(8):946-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23594350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Apr 22;14:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23607900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Sep;11(7):847-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23711079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):783-786</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23811222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):786-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23811228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 26;8(6):e67150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17594-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24101475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24150273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24156769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 May;15(4):379-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24341524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Mar 24;5:98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24715894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Aug;79(3):361-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24888695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Jul 03;10(7):e1004223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24992661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jul 18;345(6194):1251788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25035500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Sep 11;10(9):e1004329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25211126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Sep 01;5:372</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 24;5:641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25505474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 08;5:759</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25620970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Jul;105(7):917-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25775107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Jul;105(7):872-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26120730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Aug 05;16:579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26238441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jul 30;6:558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Oct;27(10):2991-3012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26452600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2015 Dec;47(12):1494-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26551671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Apr;210(2):743-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Mar 30;1(4):15034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27247034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Nov 30;1:15186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27251721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Nov 4;266(5186):789-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7973631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15497-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8986840</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>États-Unis</li>
</country>
<region>
<li>Minnesota</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Minnesota">
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
</region>
<name sortKey="Steffenson, Brian" sort="Steffenson, Brian" uniqKey="Steffenson B" first="Brian" last="Steffenson">Brian Steffenson</name>
<name sortKey="Szabo, Les J" sort="Szabo, Les J" uniqKey="Szabo L" first="Les J" last="Szabo">Les J. Szabo</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Upadhyaya, Narayana M" sort="Upadhyaya, Narayana M" uniqKey="Upadhyaya N" first="Narayana M" last="Upadhyaya">Narayana M. Upadhyaya</name>
</noRegion>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<name sortKey="Ellis, Jeff G" sort="Ellis, Jeff G" uniqKey="Ellis J" first="Jeff G" last="Ellis">Jeff G. Ellis</name>
<name sortKey="Park, Robert F" sort="Park, Robert F" uniqKey="Park R" first="Robert F" last="Park">Robert F. Park</name>
<name sortKey="Sperschneider, Jana" sort="Sperschneider, Jana" uniqKey="Sperschneider J" first="Jana" last="Sperschneider">Jana Sperschneider</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000085 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000085 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26941766
   |texte=   Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26941766" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020